Jointly Optimal Quantization, Estimation, and Control of Hidden Markov Chains’
نویسندگان
چکیده
It is of interest to understand the tradeoff between the communication resource comsumption and the achievable system performance in networked control systems. In this paper we explore a general framework for tradeoff analysis and decision making in such systems by studying joint quantization, estimation, and control of a hidden Markov chain. Dynamic programming is used to find the optimal quantization and control scheme that minimizes a weighted combination of different cost terms including the communication cost, the delay, the estimation error, and the running cost. Simulation and analysis based on example problems show that this approach is able to capture the tradeoffs among competing objectives by adjusting the cost weights.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملDistributed State Estimation for Hidden Markov Models with Dynamic Quantization and Rate Allocation
This paper considers state estimation of hidden Markov models by sensor networks. By employing feedback from the fusion center to the sensor nodes, a dynamic quantization scheme is proposed and analyzed by a stochastic control approach. Dynamic rate allocation is also considered. Copyright c ©2005 IFAC
متن کاملMaximum Likelihood Estimation for Markov Chains
A new approach for optimal estimation of Markov chains with sparse transition matrices is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003